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Abstract

The accurate assignment of geocodes to the residences of subjects in a study population is an

important component of the data acquisition/assimilation stage of a spatial epidemiological

investigation. Unfortunately, however, it is not a simple matter to obtain accurate point-level

geocodes. Recent investigations have demonstrated that when residential address geocoding

is performed by the most common method of street-segment matching to a georeferenced road

file and subsequent interpolation, positional errors of hundreds of meters are commonplace,

especially in rural locations. Ignoring these errors in a statistical analysis may lead to

biased estimators, a reduction in power, and incorrect conclusions. This article modifies

some existing likelihood-based procedures for estimating the intensity and relative risk of

Poisson spatial point processes from locations ascertained without error, so as to permit

valid inferences to be made from locations observed with error. The superior performance

of the modified methods compared to methods that ignore positional errors is demonstrated

by simulation.

Key words: Case-control data, Geocode, Location uncertainty, Poisson process, Positional

accuracy, Spatial epidemiology.



1 Introduction

Knowledge of the spatial coordinates, or geocodes, of sites where people live and work may

be very useful for developing hypotheses about the etiology of a disease and for testing

those hypotheses via spatial statistical analyses. Consequently, the accurate assignment

of a geocode to every subject in a study population is an important component of the

data acquisition/assimilation stage of a spatial epidemiological investigation. Unfortunately,

however, it is frequently not a simple matter to obtain accurate geocodes. Although time

and resources may sometimes be sufficient for geocoding to be performed using such highly

accurate methods as global positioning system (GPS) transmitters or aerial imagery, it is

much more common in public health research to obtain geocodes using widely available

geographic information systems software that attempts to match each subject’s address

to a street segment georeferenced within a streetline database (e.g. a U.S. Census Bureau

TIGER file) and then interpolates the position of the address along that segment. This latter

method, which henceforth we call automated geocoding, is much cheaper but considerably

less accurate than GPS-based, image-based, and other less automated methods. Several

recent studies (e.g. Bonner et al., 2003; Ward et al., 2005; Zimmerman et al., 2006) have

demonstrated that automated geocoding errors of several hundred meters occur frequently,

and even larger errors are not uncommon in rural areas. Cayo and Talbot (2005) found that

10% of rural addresses in an upstate New York study area geocoded with errors of more than

1.5 km, and 5% geocoded with errors exceeding 2.8 km.

The reality of locational uncertainty due to geocoding errors notwithstanding, virtually all

analytic methods for spatial epidemiology are based on models for which the data locations

are assumed to be ascertained without error; see, e.g. Lawson (2001), Diggle (2003), and

Waller and Gotway (2004) for reviews of these methods and models. Analytic methods are

generally adversely affected by the additional variation introduced by location uncertainty;

specific effects include inflation of standard errors for parameter estimates and a reduction
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in power to detect such spatial features as clusters and trends. Most published studies of

the effects of location errors pertain to effects on disease cluster detection. For example,

Burra et al. (2002) show that even relatively small errors can have a discernible impact

on the local Moran’s I statistic for clustering. Additional studies of the impact of location

uncertainty on detecting clustering and/or clusters include Waller (1996), Jacquez and Waller

(2000), and Zimmerman (2007); its impacts on parameter estimation and spatial prediction

in geostatistical models, and methods for accounting for them, are considered by Gabrosek

and Cressie (2002) and Cressie and Kornak (2003). Relatively little attention has been given

to how one might modify existing spatial epidemiologic methods so as to properly account for

location uncertainty. The only published works in this area are those of Diggle (1993), who

briefly outlines a method for K-function estimation from uncertain locations, and Jacquez

(1994, 1996), who considers methods for accounting for location uncertainty in conjunction

with the Cuzick-Edwards test and other cluster statistics.

One important set of spatial epidemiologic methods for which the effects of location

uncertainty and modifications to account for them have not yet been considered are those

methods associated with estimating intensity and spatial variation in risk. The intensity

function of a spatial point process describes how the expected number of “events” (e.g.

incident disease cases) per unit area varies across the spatial region of interest, while the

relative risk is essentially the ratio of the intensity of one process to the intensity of another

(e.g. cases to controls). Likelihood-based procedures for estimating the intensity and relative

risk of Poisson processes from locations ascertained without error are proposed by Cox (1972),

Diggle (1990), and Diggle and Rowlingson (1994). The purpose of this article is to develop

modifications to these procedures that permit valid likelihood-based inferences for intensity

and relative risk to be made from locations subject to error.

It is assumed throughout that the geocoding is complete, i.e. that all addresses geocode to

a point location, regardless of how large an error is incurred in doing so. In reality, complete

geocoding is as rare as error-free geocoding, it being common for perhaps 10% or even as
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many as 30% of subjects’ addresses to fail to geocode using standard software and street

files, due to such things as omissions and incorrect address ranges within the street files. For

example, Gregorio et al. (1999) and Oliver et al. (2005) present public health studies in which

14% and 26%, respectively, of the addresses in their datasets could not be assigned a point

location via automated geocoding. An analysis based on only the observations that geocode

is subject to a form of selection bias called geographic bias (Oliver et al., 2005). However,

there is virtually always a reliable coarse (areal-level) measurement, e.g. a zip code, associated

with each observation that fails to geocode. These coarser locations may be combined with

point-level data to make valid inferences for intensity or risk in the presence of geographic

bias via either (a) a coarsened-data maximum likelihood estimation procedure (Zimmerman,

2006), or (b) imputation of a surrogate point location (such as that of a randomly selected

event within the same zip code) for the addresses that do not geocode. Fully satisfactory

procedures for intensity and risk estimation from data whose point locations are ascertained

by automated geocoding may require that one of these inference procedures for incompletely

geocoded data be combined with modifications developed herein that account for inaccurate

geocoding.

The remainder of the article is organized as follows. In the next section, we review

standard likelihood-based procedures for estimating intensity and spatial variation in risk in

the absence of location errors, and we propose modified inference procedures which account

for the errors. Section 3 presents a simulation study of the performance of the modified

procedures. Section 4 is a brief discussion.
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2 Inference Using Uncertain Locations

2.1 Maximum likelihood estimation of intensity

Consider a two-dimensional Poisson process observed on a region of interest D. Let N(B)

represent the number of events of this process that occur in an arbitrary region B ⊂ D

of area |B| and let s denote the bivariate vector of spatial coordinates (e.g. latitude and

longitude, or UTM coordinates) of an arbitrary point in D. The intensity function, λ(s), of

the process is defined as

λ(s) = lim
|b(s)|→0

(

E[N{b(s)}]

|b(s)|

)

,

where b(s) is a circular region centered at s. We assume here that the intensity function

belongs to a parametric family {λ(s; θ) : θ ∈ Θ}. An important example is the family of

modulated Poisson processes introduced by Cox (1972), for which λ(s; θ) = exp{θ
′

z(s)}

where z(s) is a specified vector of covariates observed at s.

Let s1, s2, . . . , sn represent the true locations of the n events that occur in D. If these

locations are observed without error, then the associated likelihood function is proportional

to

L(θ; s1, . . . , sn) = exp
{

−
∫

D
λ(s; θ) ds

}

{

n
∏

i=1

λ(si; θ)

}

(1)

(Cox, 1972). A maximum likelihood estimate of θ is a value θ̂ ∈ Θ that maximizes L. Now

suppose that we don’t actually observe the true locations but instead observe perturbed ver-

sions of them, denoted as u1, . . . ,un. Suppose further that conditional on the true locations,

the ui are independent and each ui has bivariate density function g(u|si, τ ), where τ is a

vector of dispersion parameters. In practice we may often choose this density such that the

conditional mean of ui is si, but this is not necessary. Then the joint likelihood of the true

and observed locations is proportional to the product of L(θ; s1, . . . , sn) and these bivariate

densities; furthermore, the unconditional joint likelihood of the observed locations may be

obtained by integrating over the distribution of the true locations, and hence is proportional
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to

LE(θ, τ ;u1, . . .un) = exp
{

−
∫

D
λ(s; θ) ds

} n
∏

i=1

∫

D
λ(si; θ)g(ui|si, τ ) dsi. (2)

A location-error-adjusted maximum likelihood estimate of θ is the first part, θ̂E, of any value

(θ̂
′

E, τ̂
′

)
′

that maximizes LE. Note that each ui, unlike si, need not be confined to D.

2.2 Conditional maximum likelihood estimation of spatial varia-

tion in risk

Now we turn our attention to epidemiologic applications in which there are two spatial

point processes of interest rather than one. In such applications events may represent, for

example, cases of two diseases, cases of a single disease for males and females, or cases of a

single disease and a random sample of controls from the population at risk. We shall take the

setting to be the last of these three possibilities, but the same methodological development

also applies to the other two. Our interest is in estimating spatial variation in the relative

risk, which is essentially the spatial variation in the ratio of the intensity of cases to that of

controls.

Diggle and Rowlingson (1994) propose the following conditional likelihood approach for

estimating spatial variation in risk when locations are ascertained without error. Assume

that cases and controls occur in a study region D according to independent Poisson processes

with intensities λ1(s; θ1) and λ0(s; θ0), respectively, in which case their superposition is also

Poisson with intensity λ0(s; θ0) + λ1(s; θ1). In this superposition, define a binary random

variable Yi to take the value 1 or 0 according to whether si, the ith event in the superposition,

is a case or a control. Then, conditional on the realized superposition s1, s2, . . . , sn1+n0
(in

which events are not distinguished by whether they are cases or controls), the Yi are mutually

independent Bernoulli variables and p(si; θ) ≡ P (Yi = 1) = λ1(si; θ1)/{λ0(si; θ0)+λ1(si; θ1)}

for i = 1, . . . , n1 + n0. Here θ = (θ
′

0, θ
′

1)
′

. Thus the likelihood function associated with the
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Yi, conditional on the true superposition, is proportional to

L∗(θ) = L∗(θ; Y1, . . . , Yn1+n0
|s1, . . . , sn1+n0

) =
n1
∏

i=1

p(si; θ)
n1+n0
∏

i=n1+1

{1 − p(si; θ)} (3)

where without loss of generality we have labeled the events such that the first n1 are cases.

Maximization of L∗(θ) yields the conditional MLE of θ.

Diggle and Rowlingson (1994) illustrate this approach by assuming further that the in-

tensities are related multiplicatively, i.e. that

λ1(s; α, β, θ0) = αλ0(s; θ0)ξ(s; β) for all s ∈ D, (4)

where α is a nuisance parameter relating to the numbers of cases and controls (the latter

being under the control of the investigator) and ξ(s; β) is a parametrically specified relative

risk function. Under (4), p(si; θ) = αξ(si; β)/{1 + αξ(si; β)} where we redefine θ = (α, β
′

)
′

,

and thus L∗ is free of the control intensity λ0(s; θ0).

Now consider how to accommodate location errors within this approach. In this context,

si denotes the true location of the ith event in the superposition; let ui denote its ascertained

(but erroneous) location. Assume that the distribution of ui, given the true superposition,

has density g(u|si, τ ). As above, define a binary random variable Yi to take the value 1

or 0 according to whether the event ascertained to be at ui (but actually located at si) is

a case or a control; given the true superposition, Yi is again Bernoulli with P (Yi = 1) =

λ1(si)/{λ0(si)+λ1(si)}. (For simplicity of notation we will temporarily suppress dependence

of the intensities and other quantities on θ.) Finally, assume that the ui and the Yi are

independent, conditional on the true superposition. Then the joint density of ui and Yi,

conditional on the true superposition, is given by f(u, y|si) = g(u|si, τ ){p(si)}
y{1−p(si)}

1−y,

and the joint density of ui, Yi, and si is given by h(u, y, s) = g(u|s, τ ){p(s)}y{1−p(s)}1−yk(s).

Here, k(·) is the density of an arbitrary event in the true superposition, which is given by

k(s) = {λ0(s) + λ1(s)}/[
∫

D{λ0(t) + λ1(t)} dt]. Straightforward manipulations then yield

q(ui) ≡ P (Yi = 1|ui) =

∫

D λ1(s)g(ui|s) ds
∫

D{λ0(s) + λ1(s)}g(ui|s) ds
.
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Finally, we find that the likelihood function associated with Y1, . . . , Yn1+n0
, conditional on

the observed superposition u1, . . . ,un1+n0
, is proportional to

L∗
E(θ; Y1, . . . , Yn1+n0

|u1, . . . ,un1+n0
) =

n1
∏

i=1

q(ui; θ)
n1+n0
∏

i=n1+1

{1 − q(ui; θ)} (5)

where we have restored the explicit dependence on θ.

Under the multiplicative model (4), we have

q(ui; α, β, θ0, τ ) =

∫

D αξ(s; β)λ0(s; θ0)g(u|s, τ ) ds
∫

D{1 + αξ(s; β)}λ0(s; θ0)g(u|s, τ ) ds
. (6)

Note that, unfortunately, the intensity of controls generally does not drop out of (6). This

contrasts with the situation in which locations are ascertained without error, and might seem

to render the conditional approach impractical for use with uncertain locations. However,

note that if the intensity of controls were constant, then it would drop out, yielding

q(ui; α, β, τ ) =

∫

D αξ(s; β)g(u|s, τ ) ds
∫

D{1 + αξ(s; β)}g(u|s, τ ) ds
. (7)

Moreover, if the intensity of controls is not constant but is relatively slowly-varying, then

perhaps q(ui; α, β, τ ) could be successfully approximated by (7). Alternatively, λ0(·) might

be replaced with a kernel-based estimate.

3 Simulation Studies

This section presents two simulation studies of the performance of the location-error-adjusted

MLEs of intensity and relative risk parameters developed in the previous section. Both

studies address the question of how large geocoding errors must be to have a discernible

impact on the performance of the MLEs.

We first consider a single Poisson process observed on the unit square D ≡ [0, 1] × [0, 1]

with point-source intensity function

λ(s; θ0, ν) = θ0

{

1 + 15 exp{−ν[(x − 0.5)2 + (y − 0.5)2]}
}

, (8)

7



where ν = 25 and θ0 = 173.4051. This value of θ0 was chosen so that the expected number

of events in D would be 500. The intensity function itself was chosen for its strong gradient

and relative tractability, as the integrals in both (1) and (2) can be evaluated explicitly. A

typical realization of the process is displayed in the top panel of Figure 1. Note the relatively

high intensity near (0.5,0.5) and the (exponential) decay away from this point. Each process

realization is subsequently perturbed as described in section 2.1. Specifically, we take the

conditional distribution of a perturbed location ui, given si, to be circular bivariate normal

with mean si and variance σ2, where σ2 = 0.0025 or 0.01. Five hundred realizations of

the process were simulated for each value of σ2. The middle panel of Figure 1 displays the

point pattern resulting from perturbing the realization in the top panel, and the bottom

panel shows the pattern that results from subsequently applying a toroidal edge correction.

We shall denote the sets of points of these three types respectively by Sn = {s1, . . . , sn},

Un = {u1, . . . ,un}, and U∗
n = {u∗

1, . . . ,u
∗
n}, where u∗

i is the toroidally edge-corrected ui. An

inferential approach using the latter set of points was included to see if keeping the perturbed

locations within the confines of the original study area would improve the performance of

an approach that ignores location errors.

For a realization of the process without errors, we have, upon inserting (8) into (1) and

simplifying,

log L(θ0, ν; Sn) = n log θ0 +
n
∑

i=1

log
{

1 + 15 exp{−ν[(xi − 0.5)2 + (yi − 0.5)2]}
}

−θ0{1 +
15π

ν
[1 − 2Φ(−

√

ν/2)]2}

apart from terms that do not depend on the parameters. Here, Φ(·) is the cdf of the standard

normal distribution. For a realization of the process with errors (i.e. after perturbation), we

have, upon inserting (8) into (2), completing the square and simplifying,

log LE(θ0, ν, σ
2; Un) = n log θ0 +

n
∑

i=1

log
{

[Φ
(

1 − ui

σ

)

− Φ
(

−ui

σ

)

] · [Φ
(

1 − vi

σ

)

− Φ
(

−vi

σ

)

]

+
15

1 + 2νσ2
exp{−ν[(ui − 0.5)2 + (vi − 0.5)2]/(1 + 2νσ2)}
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·

[

Φ

(

1 − (ui + νσ2)(1 + 2νσ2)−1

σ(1 + 2νσ2)−1/2

)

− Φ

(

(−ui + νσ2)(1 + 2νσ2)−1

σ(1 + 2νσ2)−1/2

)]

·

[

Φ

(

1 − (vi + νσ2)(1 + 2νσ2)−1

σ(1 + 2νσ2)−1/2

)

− Φ

(

−(vi + νσ2)(1 + 2νσ2)−1

σ(1 + 2νσ2)−1/2

)]}

−θ0{1 +
15π

ν
[1 − 2Φ(−

√

ν/2)]2}.

From the simulated data, the parameters were estimated in four distinct ways:

1. Maximization of L(θ0, ν; Sn), i.e., maximum likelihood estimation using the locations

observed without error. This method serves as a benchmark to which we can com-

pare the performance of the three remaining methods, all of which use the perturbed

locations.

2. Maximization of L(θ0, ν; Un), i.e., naively using the perturbed locations as though they

were observed without error.

3. Maximization of L(θ0, ν; U∗
n), i.e., naively using the locations that are perturbed as

though they were observed without error, but toroidally edge-correcting them so that

they remain in the unit square.

4. Maximization of LE(θ0, ν, σ
2; Un), which is the appropriate likelihood-based analysis of

the perturbed locations.

We refer to the first and fourth methods as “proper” since they make appropriate use of the

available data, and we label the second and third methods “naive.”

Numerical results are summarized in Table 1a. Results for the third method are not

included in the table, as they were never discernibly better, and usually considerably worse,

than results for the second method. In regard to relative bias, the performance of the naive

methods is inferior to that of the proper methods, deteriorating rapidly as σ2 increases. This

is not surprising; indeed, it follows from a well-known result in the theory of point processes

(see, e.g. Cox and Isham, 1980, p. 106) that when the intensity function for this process is
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estimated from the perturbed locations by the naive methods, the estimated intensity tends

to a constant (and thus ν̂ tends to 0) as the variance of the location errors grows arbitrarily

large. Among the two proper methods, the relative bias does not differ substantially when

σ2 = 0.0025, but for the larger σ2 the method that uses the perturbed locations is slightly

more biased. Moreover, the proper MLEs based on the perturbed locations are more vari-

able than estimators corresponding to the other three methods, and become more so as σ2

increases. Nevertheless, with respect to mean squared error the proper MLEs based on the

perturbed locations are superior to those corresponding to the naive methods, especially for

the larger value of σ2.

For our second simulation study, we consider two Poisson processes, one each for controls

and cases. We take the control intensity to be constant, i.e. λ0(s; θ0) = θ0 = 500, and the

case intensity to be given by (4), with α = 0.3468 and relative risk function

ξ(s; β) = 1 + 15 exp{−ν[(x − 0.5)2 + (y − 0.5)2]}, (9)

where ν = 25. Note that this relative risk function is essentially the same as the intensity

function used in the first simulation study. The value of α, 0.3468, was chosen so that

the expected number of cases, like the expected number of controls, would equal 500. To

complete our model specification, we use the same circular bivariate normal distribution for

location errors as was used in the first study, with the same two error variances, σ2 = 0.0025

and σ2 = 0.01. Five hundred realizations of each of the two processes were simulated for

each value of σ2.

For the relative risk function (9) used here, we have

p(si; α, ν) =
α(1 + 15 exp{−ν[(xi − 0.5)2 + (yi − 0.5)2])

1 + α(1 + 15 exp{−ν[(xi − 0.5)2 + (yi − 0.5)2])
. (10)

Furthermore, θ0 drops out of (6) and the integrals in (7) can be evaluated explicitly; tedious

but straightforward computations yield

q(ui; α, ν, σ2) =
αk1(ui, σ

2) + 15αk2(ui, ν, σ
2)

(α + 1)k1(ui, σ2) + 15αk2(ui, ν, σ2)
(11)
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where

k1(u, σ2) = [Φ
(

1 − u

σ

)

− Φ
(

−u

σ

)

] · [Φ
(

1 − v

σ

)

− Φ
(

−v

σ

)

]

and

k2(u, ν, σ2) =
1

1 + 2νσ2
exp{−ν[(u − 0.5)2 + (v − 0.5)2]/(1 + 2νσ2)}

·

[

Φ

(

1 − (u + νσ2)(1 + 2νσ2)−1

σ(1 + 2νσ2)−1/2

)

− Φ

(

(−u + νσ2)(1 + 2νσ2)−1

σ(1 + 2νσ2)−1/2

)]

·

[

Φ

(

1 − (v + νσ2)(1 + 2νσ2)−1

σ(1 + 2νσ2)−1/2

)

− Φ

(

−(v + νσ2)(1 + 2νσ2)−1

σ(1 + 2νσ2)−1/2

)]}

.

Insertion of (10) and (11) into (3) and (5), respectively, yields the conditional likelihood

functions L∗(α, ν; Y1, . . . , Yn1+n0
|Sn) and L∗

E(α, ν, σ2; Y1, . . . , Yn1+n0
|Un) for this setting.

Analogous to the first study, the parameters of the relative risk function were estimated in

four ways, corresponding to the maximization of L∗(α, ν; Y1, . . . , Yn1+n0
|Sn), L∗(α, ν; Y1, . . . , Yn1+n0

|Un),

L∗(α, ν; Y1, . . . , Yn1+n0
|U∗

n), and L∗
E(α, ν, σ2; Y1, . . . , Yn1+n0

|Un). We again refer to the first

and fourth methods as proper, and the other two methods as naive.

Results of the second study are given in Table 1b. Again, the third method proved

to be almost uniformly inferior to the second method so we do not include it in the table.

Moreover, the performance of the naive methods relative to the proper methods, as well as the

performance of the fourth method relative to the first method, were broadly similar to those

of the first study. In particular, MLEs obtained by the fourth method had larger variances

than those obtained by the other three methods, but their biases were much smaller than

those of the naive method, which rendered their MSEs about half as large when σ2 = 0.01.

Although not central to the main purpose of this study, it is nonetheless of some interest

to compare the performance of the unconditional and conditional estimation methods, for

observations made both with and without error. Such comparisons can be made by com-

paring each entry in Table 1a with the corresponding entry in Table 1b. (Note that 500α̂

in 1b corresponds to θ̂0 in 1a.) Not surprisingly, the conditional approach is inferior: com-

pared to the unconditional approach, it yields mean square errors about 2-3 times larger for
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estimating the case intensity parameter 500α (≡ θ0) and ν, and about 7-12 times larger for

estimating σ2. Thus, there is a substantial price in performance to pay for using conditional

rather than unconditional maximum likelihood estimation.

4 Conclusions

In this article, we have developed methodology for accounting for location errors within

standard and conditional maximum likelihood estimation procedures for parameters of the

intensity function of a spatial point process. We demonstrated that our methods are superior

to methods that simply ignore location errors, provided that those errors are “sufficiently

large.” How large is “sufficiently large”? In our simulation studies, errors with standard

deviations equal to 5% of the length of the square study area’s side were large enough to

have discernible impacts on intensity and risk estimation. In other situations, e.g. with non-

normal errors and/or intensity functions with substantially less variation over the study area

than our point-source intensity function, errors may have to be much larger on average for

impacts on estimation to be appreciable.

In principle, the methodology proposed herein will work for positional error distributions

of any known (and absolutely continuous) form. In practice, however, certain error distri-

butions may be particularly convenient as they may yield a closed-form expression for the

likelihood function, while other distributions may not. (This is analogous to the notion of

conjugate priors yielding closed-form posterior distributions in Bayesian estimation.) Due

to the exponential form of the point-source intensity function used in our simulation stud-

ies, a bivariate normal error distribution was especially convenient. Indeed, normal error

distributions will be convenient in this regard for any modulated Poisson process, due to its

exponential form. Normal distributions appear to be appropriate for some positional error

datasets, e.g. those of Cayo and Talbot (2003) and Whitsel et al. (2006), but for others bi-

variate t distributions or mixtures thereof have been found to fit much better (Zimmerman
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et al., 2006).

Although we considered only parametric estimation, methodology for accounting for loca-

tion errors in nonparametric intensity estimation would also be useful. Stefanski and Carroll

(1990) consider kernel density estimation for univariate observations contaminated with ad-

ditive measurement error, and Horrace (2000) specializes Stefanski and Carroll’s results to

the situation in which the errors are normal with zero mean. Extensions of these methods

to bivariate observations would allow for appropriate adjustments for geocoding errors in

kernel estimation of a spatial intensity function.

It would also be desirable to extend the methodology presented here to accommodate

heteroscedasticity in the errors. Several investigations of geocoding accuracy have found an

increase in accuracy with increasing population density (Bonner et al., 2003; Cayo and Tal-

bot, 2003; Ward et al., 2005). One possibility for incorporating this type of heteroscedasticity

into our approach would be to classify each address as belonging to a dichotomous (rural or

urban) or perhaps trichotomous (rural, suburban, or urban) zone, and allow each zone to

have a different variance parameter. Then the conditional density of an observed location,

given the true location, would be modelled as a function of the bivariate or trivariate vector

of these variance parameters rather than a function of merely one variance parameter. In

the case-control setting, an alternative, more continuous approach would be to model the

variance parametrically as a function of the control intensity.

Finally, we must note the contribution that representation error, quite apart from loca-

tion error, makes to uncertainty in spatial epidemiology. Although the geocode is typically

regarded as the place where a health event and its causative exposure occur, and it is com-

mon practice to use the corresponding individual’s place of residence as the geocode, these

are gross oversimplifications. People may be exposed to disease vectors or carcinogens, for

example, in their workplaces, in transit, or at other locations. Furthermore, for diseases such

as cancer, in which onset may occur years after exposure, the person’s place of residence and

occupation in the past may be of equal or greater relevance than their geocode at diagnosis.

13



Therefore, it must be noted that no matter how sophisticated and powerful a method of sta-

tistical analysis may be at adjusting for the effects of positional errors ascribed to imperfect

geocoding, it will not reflect the inherent uncertainty associated with using the geocode to

represent the location of exposure. However, methods for adjusting inferences for the effects

of incorrect geocoding may also be adapted for dealing with data for which a region, rather

than a point, is used to represent the location of exposure; see Jacquez, Kaufmann, Meliker,

Goovaerts, AvRuskin, and Nriagu (2005).
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Table 1: Empirical Relative Bias, Standard Deviations, and Mean Square Errors of Maximum

Likelihood Estimators of Parameters for a Case of the Point-Source Intensity Model Given

by (8). For (a), θ0 = 173.4051 and ν = 25, which yield an expected number of cases equal to

500. For (b), 500α = 173.4051 and ν = 25, which yield 500 expected cases and 500 expected

controls. Relative biases are expressed as a percentage of the parameter’s magnitude, and

those that exceed two standard errors are set in bold type. The mean square error of σ̂2 is

given in units of 10−7.

(a) Maximum likelihood estimators of intensity and noise parameters

Relative bias Standard deviation Mean square error

Estimation method σ2 θ̂0 ν̂ σ̂2 θ̂0 ν̂ σ̂2 θ̂0 ν̂ σ̂2

L(·; Sn) 0.0025 0.3 0.9 — 13.99 2.59 — 196 6.7 —

L(·; Un) -6.6 -9.4 — 14.18 2.49 — 332 11.8 —

LE(·; Un) -0.3 0.2 -3.8 16.24 3.19 0.00076 264 10.2 5.9

L(·; Sn) 0.01 0.3 0.7 — 13.86 2.54 — 192 6.5 —

L(·; Un) -20.5 -28.4 — 14.79 2.56 — 1480 56.9 —

LE(·; Un) 0.7 2.3 -3.4 24.01 5.28 0.00177 578 28.2 32.6

(b) Conditional maximum likelihood estimators of relative risk and noise parameters

Relative bias Standard deviation Mean square error

Estimation method σ2 500α̂ ν̂ σ̂2 500α̂ ν̂ σ̂2 500α̂ ν̂ σ̂2

L∗(·; Sn) 0.0025 -0.7 -0.2 — 22.59 3.84 — 511 14.7 —

L∗(·; Un) -4.2 -8.6 — 25.31 4.07 — 692 21.2 —

L∗
E(·; Un) 0.0 1.7 3.4 25.79 5.38 0.00278 665 29.1 77

L∗(·; Sn) 0.01 -0.5 -0.2 — 21.70 3.54 — 472 12.6 —

L∗(·; Un) -17.8 -31.3 — 37.30 5.65 — 2347 93.3 —

L∗
E(·; Un) -1.6 -0.5 -15.2 33.86 7.59 0.00438 1154 57.6 215
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Figure 1: Typical realization of the process used in the first simulation study. This particular

realization has 476 events.
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